Grant34
Организатор
- #1
Глубокое обучение и анализ данных. Практическое руководство [Дмитрий Малов]
- Ссылка на картинку
Книга о принципах глубокого обучения, описывающая
построение и развитие нейронных сетей с нуля. На материале обширных практических наработок в сфере распознавания образов и обработки естественного языка продемонстрированы возможности популярной библиотеки Pytorch, а также Keras и Tensorflow. Особое внимание уделено разбору базовых алгоритмов, реализованных на языке Python, которые помогут самостоятельно освоить работу с нейронными сетями, написав собственное приложение для глубокого обучения на основе данных из браузера.
Для Python-разработчиков и специалистов Data Science
Как говорил Артур Кларк, «любая достаточно продвинутая технология неотличима от магии» («третий закон Кларка»). На наших глазах именно так начинает восприниматься глубокое обучение – технология, зародившаяся в 1959 году.
Эта книга поможет вам сделать первые шаги в изучении важнейших современных библиотек глубокого обучения – Keras, PyTorch и Tensorflow. В ней просто и последовательно раскрываются принципы обработки изображений и естественного языка при помощи базовых алгоритмов, реализованных на Python. В книгу включён проект по построению собственной системы глубокого обучения на основе данных из обычного браузера.
Для Python-разработчиков и специалистов Data Science
Как говорил Артур Кларк, «любая достаточно продвинутая технология неотличима от магии» («третий закон Кларка»). На наших глазах именно так начинает восприниматься глубокое обучение – технология, зародившаяся в 1959 году.
Эта книга поможет вам сделать первые шаги в изучении важнейших современных библиотек глубокого обучения – Keras, PyTorch и Tensorflow. В ней просто и последовательно раскрываются принципы обработки изображений и естественного языка при помощи базовых алгоритмов, реализованных на Python. В книгу включён проект по построению собственной системы глубокого обучения на основе данных из обычного браузера.
Зарегистрируйтесь
, чтобы посмотреть скрытый авторский контент.