Arkadia
Организатор
- #1
Обучение с малым количеством данных [Джеймс Девис]
- Ссылка на картинку
О книге:
Вас ждет увлекательное и глубокое исследование одного из самых инновационных направлений в искусственном интеллекте, способного революционизировать технологии. Когда традиционные модели требуют огромных объемов данных для обучения, Few-shot и Zero-shot подходы позволяют алгоритмам обучаться и принимать решения на минимальном количестве примеров — или вовсе без них.
В этой книге раскрываются секреты создания моделей, которые не только учатся на лету, но и могут адаптироваться к новым условиям, сталкиваясь с неизвестными категориями. Читатель узнает, как эти прорывные методы трансформируют такие критические области, как медицина, робототехника, обработка изображений и текста.
Эта книга станет путеводителем для тех, кто хочет освоить будущее ИИ, исследуя тонкости работы алгоритмов, способных справляться с нехваткой данных, и предсказывая их влияние на ближайшие технологические горизонты.
Формат: PDF
Вас ждет увлекательное и глубокое исследование одного из самых инновационных направлений в искусственном интеллекте, способного революционизировать технологии. Когда традиционные модели требуют огромных объемов данных для обучения, Few-shot и Zero-shot подходы позволяют алгоритмам обучаться и принимать решения на минимальном количестве примеров — или вовсе без них.
В этой книге раскрываются секреты создания моделей, которые не только учатся на лету, но и могут адаптироваться к новым условиям, сталкиваясь с неизвестными категориями. Читатель узнает, как эти прорывные методы трансформируют такие критические области, как медицина, робототехника, обработка изображений и текста.
Эта книга станет путеводителем для тех, кто хочет освоить будущее ИИ, исследуя тонкости работы алгоритмов, способных справляться с нехваткой данных, и предсказывая их влияние на ближайшие технологические горизонты.
Формат: PDF
Зарегистрируйтесь
, чтобы посмотреть скрытый авторский контент.