Фэйт
Организатор
- #1
[SkillFactory] Профессия Аналитик данных. Полный курс. Тариф База [Эмиль Магеррамов, Михаил Баранов]
- Ссылка на картинку
Кто такой аналитик данных
Аналитик данных — это специалист по анализу больших данных: он их собирает, обрабатывает и делает выводы.
Аналитик помогает увидеть точки роста бизнеса. На основании его отчетов в компаниях принимают важные решения.
Проблема: Низкая эффективность у онлайн-магазина. Пользователи переходят на сайт, но не оформляют заказ.
Решение: Аналитик данных выясняет, на каком этапе теряется интерес пользователей. Затем предлагает и проверяет гипотезы, которые помогут удержать клиента и довести до покупки.
На курсе вы научитесь
Программа курса
База
На первом этапе вам предстоит познакомиться с бизнес-моделями e-commerce (электронная коммерция) и GameDev (разработка игр). Вы рассмотрите не только теорию, но и поработаете с Google Таблицами, изучите основы статистики, SQL и Python, чтобы эффективно анализировать данные.
Основы аналитики
Казалось бы — зачем теория, лучше сразу в бой! Но нет: без аналитического мышления и умения работать с документацией ничего не выйдет. Поэтому сначала вас ждут:
Владение таблицами и статистикой — базовая компетенция аналитика. А еще необходимо научиться решать сложные задачи, не изобретая велосипед. В этом вам поможет тренажер:
Онлайн-магазины — сейчас не просто тренд, а новая реальность. В E-commerce есть где разгуляться аналитику:
Тренажер-базы данных и SQL
В 84% вакансий аналитиков с опытом 1–3 года требуется знание SQL. Вы сможете соответствовать этому критерию:
Более 200 упражнений
Агрегатные и оконные функции, соединение таблиц, сложные объединения, подзапросы (и это еще краткий список)
Запросы не ради запросов, а для решения конкретных задач аналитика
Тренажер - PowerBI
Невозможно просто посмотреть на массив цифр и вычленить смысл, поэтому аналитики визуализируют данные с помощью Power BI. И вы научитесь:
Разработка игр сейчас на подъеме, причем «поднимают» эту индустрию не только гейм-дизайнеры и разработчики, но и мастера аналитики. Вот что мы подготовили для вас:
ОСНОВНОЙ БЛОК
На втором этапе вы продолжите совершенствовать навыки Python, научитесь работать с третьей бизнес-моделью — on-demand (доступ к услугам по требованию), а также выберете дальнейшую специализацию.
Тренажер-Python для анализа данных
Такие компании, как «Яндекс» и Mail.Ru, хотят видеть среди своих сотрудников аналитиков, которые дружат с программированием. Вы точно подружитесь:
Мы все теперь пользуемся моделью «по запросу» — это Uber, «Яндекс.Еда» и другие сервисы, предоставляющие услуги буквально по одному клику. Но работать в этой области могут не все — только те, кто пройдет нашу программу:
На третьем этапе вы погрузитесь в одну из выбранных специализаций — «Маркетинговую аналитику» или «Продуктовую аналитику». Вы научитесь проводить A/B-тесты, визуализировать данные и верно интерпретировать метрики, проверять гипотезы и получать инсайты на основе данных, а также добавите в свое портфолио два проекта.
Маркетинговая аналитика
На маркетинговой специализации вы научитесь настраивать сквозную аналитику, понимать взаимосвязи различных источников трафика, проводить когортный и RFM-анализ и составлять простые и понятные отчеты и дашборды, строить гипотезы, запускать статистически обоснованное А/В-тестирование и делать грамотные выводы с использованием математического аппарата.
На продуктовой специализации вы разберетесь в основных метриках продукта, получите понимание, какие данные нужно собирать и где их хранить, научитесь структурировать информацию, строить графики, проверять гипотезы и получать ценные для бизнеса инсайты на основе аналитики данных.
Преподаватели и менторы курса
Эмиль Магеррамов, COO Data Lab, компания EORA
Михаил Баранов, Ex-Senior ML Engineer, Yandex, Ex-Lead Data Scientist, Sberbank CIB
Юлия Мочалова, Machine Learning-инженер, «Газпром-Медиа»
Михаил Белоус, Data Scientist, Райффайзен Банк CIB
Тариф Базовый
Аналитик данных — это специалист по анализу больших данных: он их собирает, обрабатывает и делает выводы.
Аналитик помогает увидеть точки роста бизнеса. На основании его отчетов в компаниях принимают важные решения.
Проблема: Низкая эффективность у онлайн-магазина. Пользователи переходят на сайт, но не оформляют заказ.
Решение: Аналитик данных выясняет, на каком этапе теряется интерес пользователей. Затем предлагает и проверяет гипотезы, которые помогут удержать клиента и довести до покупки.
На курсе вы научитесь
- Работать с основными метриками продукта и маркетинга
- Применять знания статистики для анализа данных
- Проводить сбор данных при помощи: Google Analytics, Google Tag Manager, Amplitude, Яндекс.Метрики, Python
- Обрабатывать данные при помощи: Google Analytics, Google Tag Manager, Яндекс.Метрики, Google Sheets, SQL, Python
- Визуализировать данные при помощи: Google Sheets, Power BI, Python
- Делать выводы и рекомендации для бизнеса на основе анализа данных
Программа курса
База
На первом этапе вам предстоит познакомиться с бизнес-моделями e-commerce (электронная коммерция) и GameDev (разработка игр). Вы рассмотрите не только теорию, но и поработаете с Google Таблицами, изучите основы статистики, SQL и Python, чтобы эффективно анализировать данные.
Основы аналитики
Казалось бы — зачем теория, лучше сразу в бой! Но нет: без аналитического мышления и умения работать с документацией ничего не выйдет. Поэтому сначала вас ждут:
- Обзор бизнес-моделей и видов аналитики
- Логические задачи для собеседований
- Прокачка аналитического и критического мышления
- Работа с аналитической документацией
Владение таблицами и статистикой — базовая компетенция аналитика. А еще необходимо научиться решать сложные задачи, не изобретая велосипед. В этом вам поможет тренажер:
- Более 200 упражнений
- Самые важные темы — первичный анализ, сводные таблицы, графики, описательная и математическая статистика
- Отработка материала на аналитических задачах
Онлайн-магазины — сейчас не просто тренд, а новая реальность. В E-commerce есть где разгуляться аналитику:
- 4 тематических проекта для портфолио
- Продуктовые и маркетинговые метрики
- Пирамида метрик и юнит-экономика
- Инструменты сбора — Google Analytics, Amplitude
Тренажер-базы данных и SQL
В 84% вакансий аналитиков с опытом 1–3 года требуется знание SQL. Вы сможете соответствовать этому критерию:
Более 200 упражнений
Агрегатные и оконные функции, соединение таблиц, сложные объединения, подзапросы (и это еще краткий список)
Запросы не ради запросов, а для решения конкретных задач аналитика
Тренажер - PowerBI
Невозможно просто посмотреть на массив цифр и вычленить смысл, поэтому аналитики визуализируют данные с помощью Power BI. И вы научитесь:
- Более 50 упражнений
- 2 интерактивных отчета
Разработка игр сейчас на подъеме, причем «поднимают» эту индустрию не только гейм-дизайнеры и разработчики, но и мастера аналитики. Вот что мы подготовили для вас:
- 3 тематических проекта в портфолио
- Сквозная маркетинговая аналитика
- Сегментация и поведение пользователей
ОСНОВНОЙ БЛОК
На втором этапе вы продолжите совершенствовать навыки Python, научитесь работать с третьей бизнес-моделью — on-demand (доступ к услугам по требованию), а также выберете дальнейшую специализацию.
Тренажер-Python для анализа данных
Такие компании, как «Яндекс» и Mail.Ru, хотят видеть среди своих сотрудников аналитиков, которые дружат с программированием. Вы точно подружитесь:
- Более 300 упражнений
- Структуры данных, Pandas, методы визуализации и работа с API
Мы все теперь пользуемся моделью «по запросу» — это Uber, «Яндекс.Еда» и другие сервисы, предоставляющие услуги буквально по одному клику. Но работать в этой области могут не все — только те, кто пройдет нашу программу:
- 3 тематических проекта в портфолио
- Исследование каналов привлечения
- Оценка продуктовой фичи
- А/В-тестирование
На третьем этапе вы погрузитесь в одну из выбранных специализаций — «Маркетинговую аналитику» или «Продуктовую аналитику». Вы научитесь проводить A/B-тесты, визуализировать данные и верно интерпретировать метрики, проверять гипотезы и получать инсайты на основе данных, а также добавите в свое портфолио два проекта.
Маркетинговая аналитика
На маркетинговой специализации вы научитесь настраивать сквозную аналитику, понимать взаимосвязи различных источников трафика, проводить когортный и RFM-анализ и составлять простые и понятные отчеты и дашборды, строить гипотезы, запускать статистически обоснованное А/В-тестирование и делать грамотные выводы с использованием математического аппарата.
- Сегментирование и персонализация ЦА: 2 недели
- Когортный и RFM-анализ: 2 недели
- Работа с базами данных: 2 недели
- Настройка сквозной аналитики: 2 недели
- Внешние источники данных: 2 недели
- Инструменты анализа данных: 2 недели
- А/В-тесты — статистика и математика: 2 недели
- А/В-тесты — проблемы при А/В-тестировании и их решение: 2 недели
На продуктовой специализации вы разберетесь в основных метриках продукта, получите понимание, какие данные нужно собирать и где их хранить, научитесь структурировать информацию, строить графики, проверять гипотезы и получать ценные для бизнеса инсайты на основе аналитики данных.
- Продуктовое мышление: 3 недели
- Клиентская аналитика: 5 недель
- А/В-тестирование: 6 недель
- Data-driven культура: 2 недели
Преподаватели и менторы курса
Эмиль Магеррамов, COO Data Lab, компания EORA
Михаил Баранов, Ex-Senior ML Engineer, Yandex, Ex-Lead Data Scientist, Sberbank CIB
Юлия Мочалова, Machine Learning-инженер, «Газпром-Медиа»
Михаил Белоус, Data Scientist, Райффайзен Банк CIB
Тариф Базовый
Зарегистрируйтесь
, чтобы посмотреть скрытый авторский контент.